Small Width Arithmetic Circuits

Meena Mahajan.

joint work with

Raghavendra Rao B.V

October 1, 2008
Boolean Circuits

\[(x_1 x_3 \lor x_1 x_4 \lor x_2 x_3 \lor x_2 x_4 \lor x_1 x_2 x_3)\]
Boolean Circuit: Formal definition

- Directed acyclic graph
- Internal nodes labeled with \{\lor, \land, \neg\}.
- Leaves labeled with \{0, 1, x_1, \ldots, x_n\}.
- A designated output node, of out-degree zero.
- Circuit inputs $x_i \in \{0, 1\}$

Resource Measures:

- fan in (fan out) of a node: its in-degree (out-degree)
- size – number of internal nodes
- depth – length of longest path from output node to input node
- width – maximum number of nodes at any particular level
Polynomial-size circuits and parallelizability

P: Polynomial-size *uniform* circuits.

NC: Polynomial-size Poly-logarithmic depth circuits.

short, fat
(named after Nicholas Pippenger.)

algorithms implementable in parallel polylog time.

NCi: polynomial size $O((\log n)^i)$ depth.

NC1: parity of n bits,

sorting n numbers,

evaluating a boolean formula,

membership in any fixed regular language.

NC2: computing the determinant of an integer matrix,

membership in fixed context-free language (CFL).
Polynomial-size circuits and space-efficiency

P: Polynomial-size uniform circuits.

SC: Polynomial-size Poly-logarithmic width circuits. *tall, skinny*
(named after Steve Cook).

Algorithms needing poly time and polylog space.

SC^i: polynomial size $O((\log n)^i)$ width.

SC^0: Known to be same as NC^1; hence parity of n bits, sorting n numbers, evaluating a boolean formula, membership in any fixed regular language.

SC^1: Known to be same as log-space; hence undirected graph connectivity, planarity testing, isomorphism testing for trees and planar graphs.

SC^2: membership in any fixed deterministic CFL, (PLoSS) any randomized logspace algorithm.
Branching programs

A width-2 branching program for parity

\[S \xrightarrow{x_1} \bar{x}_2 \xrightarrow{x_2} \bar{x}_2 \xrightarrow{x_2} \bar{x}_2 \xrightarrow{x_2} t \]

BWBP: Bounded Width Branching Programs (of poly size).
Known to be same as NC\(^1\).

BP: Poly size Branching Programs.
Known to be same as nondeterministic logspace.
Formulae

- **Formula**: A circuit where every node has out-degree at most 1. (The underlying graph is a forest.)
- Every circuit C has an equivalent formula F of the same depth, but F may be much (exponentially) bigger.
- NC^1 circuits have equivalent poly-size log-depth formulae.
- NC^1 circuits also have equivalent poly-size log-width formulae.
- Every poly-size formula has an equivalent NC^1 circuit.
A set of Equivalences

- $\text{BWBP} \subseteq \text{NC}^1$ (divide-and-conquer *a la* Savitch)
- $\text{BWBP} \subseteq \text{SC}^0$ (folklore)
- $\text{SC}^0 \subseteq \text{NC}^1 \subseteq \text{BWBP}$ (*Barrington*)
- $\text{NC}^1 \subseteq \text{F}$ (folklore)
- $\text{LWF} \subseteq \text{F} \subseteq \text{NC}^1$ (*Spira*)
- $\text{NC}^1 \subseteq \text{LWF}$ (*Istrail,Zilkovich*)

Thus NC^1, BWBP, SC^0, F, LWF are all equivalent.
Counting Classes

Arithmetizing a Boolean circuit:

- Move all negations to the leaves. (de Morgan’s laws)
- Replace
 - every \land gate by a \times gate;
 - every \lor gate by a $+$ gate;
 - leaf-level negation $\overline{x_i}$ by $1 - x_i$.

Meena Mahajan. *joint work with* Raghavendra Rao B.V
Small Width Arithmetic Circuits
An arithmetic circuit

Figure: An arithmetic circuit, computing the polynomial $x^2 + xy + x + y$
Arithmetic Circuit Classes

Arithmetic Circuits: Similar to counting classes.

- Computation over arbitrary rings \mathbb{K}.
- Internal nodes labeled \times or \pm.
- Leaves labeled by 0, 1, -1, or x_i for $i \in \{1, \ldots, n\}$.
- x_i can take any value in \mathbb{K}.
Arithmetic Branching Program

- Edges of the BP labeled by 0, 1, −1 or x_i for $i \in \{1, \ldots, n\}$.
- Weight of a path: product of weights of labels of edges on the path
- Function computed: sum of weights of all $s \rightarrow t$ paths.
Arithmetic Branching Program: An Example

An arithmetic branching program to compute the determinant of the matrix

\[
\begin{bmatrix}
 x_1 & x_2 & x_3 \\
 x_4 & x_5 & x_6 \\
 x_7 & x_8 & x_9 \\
\end{bmatrix}
\]

Meena Mahajan. *joint work with* Raghavendra Rao B.V

Small Width Arithmetic Circuits
Relationships among arithmetic classes?

- Not all equivalences carry over to arithmetizations.
- In particular, a-SC0 seems too powerful:
- A width two circuit can compute super-exponential values requiring super-polynomial bits in a binary representation:

\[1 \cdot 1 \otimes 1 \otimes 1 \otimes \cdots \otimes 1 \otimes 2^{2^n}\]

- We need a resource measure that restricts circuit output to feasible values.

Meena Mahajan, joint work with Raghavendra Rao B.V
Degree of a Circuit: an Example

\[\bigwedge \left(\bigvee \left[x_1 x_2 + x_1, x_1 x_2 + x_1 x_3 + x_1 x_4 \right] \right) \]

\[\bigwedge \left(\bigvee \left[x_1, x_3 + x_4 \right] \right) \]
Degree of a Circuit

- Circuit degree: roughly speaking, algebraic degree of associated polynomial.
- Caveats:
 1. constants (0, 1, −1) at leaves are replaced by new variables.
 2. cancellations not accounted for.
 degree of $(x_1 x_2 + x_3) + (x_4 - x_1 x_2)$ is 2, not 1.
- Recursive definition:
 - degree of leaf = 1,
 - degree of \lor or $+$ gate = max degree of children,
 - degree of \land or \times gate = sum of degrees of degrees of children.
Restricting the degree

- Define **small SC**, denoted sSC^i: $sSC^i = SC^i$ circuit of polynomial degree
- sSC is in NC; whatever the width. (Venkateswaran) (In fact, any poly-size poly-degree circuit has an equivalent circuit in NC.)
- $BWBP \subseteq sSC^0 \subseteq SC^0 \subseteq BWBP$
 i.e. degree bound not a restriction for SC^0.
- $sSC^0 \subseteq sSC^1 \subseteq SC^1$
 i.e. sSC^1 is sandwiched between NC^1 and L.
Relating poly degree classes

- Boolean: $sSC^0 = NC^1$
- Arithmetic: $a-NC^1 = a-BWBP \subseteq a-sSC^0$
 Ben-Or, Cleve; Caussinius, McKenzie, Therien, Vollmer
- Arithmetic: $a-F = a-NC^1$ Brent
- Open: Is $a-sSC^0$ contained in $a-NC^1$?
 That is, can tall skinny circuits be converted to equivalent short fat ones?
 Can we perform *depth-reduction*?
- In what follows: a restricted setting where we can ...
Multilinear Circuits

- A polynomial \(f \in \mathbb{K}[x_1, \ldots, x_n] \) is **multilinear** if the degree of each variable is bounded by 1.
- A circuit is **multilinear** if every gate computes a multilinear polynomial.
- In a **syntactic multilinear** circuit, the left child and right child of every \(\times \) gates contain disjoint sets of variables.

Remark: All multilinear formulae have equivalent syntactic multilinear formulae, though the construction is non-uniform.

\[
\text{ma-F} = \text{sma-F}
\]
Figure: A multilinear circuit, which is not syntactic multilinear
Why Syntactic Multilinear?

- Any syntactic multilinear formula for computing the **Permanent** or the **Determinant** requires super-polynomial size [Raz 2004]
- Syntactic multilinear circuits are strictly more powerful than syntactic multilinear formula; $\text{sma-F} \subset \text{sma-NC}^2$. [Raz 2004]

Question 1: What is the relationship among the Syntactic Multilinear arithmetic circuits around NC^1?
- $\text{sma-BWBP} \subseteq \text{sma-sSC}^0$.
- $\text{sma-BWBP} \subseteq \text{sma-NC}^1 = \text{sma-F}$.

Question 2: Can width bounded syntactic multilinear circuits be depth reduced?
- Is sma-sSC^0 in sma-NC^1?
Main theorem

Theorem

For any syntactic multilinear arithmetic circuit of width w, depth d, and degree d, there is an equivalent bounded fan-in arithmetic circuit of depth $O(w\log l + \log d)$ and size $O((ld)^w)$.

In English: syntactic multilinear tall thin circuits can be depth-reduced.

Note: The depth-reduced circuit need not be syntactic multilinear.
Proof sketch

Idea: Divide and conquer

Circuit to compute the coefficients of the monomial R in $h \in K[u_1, \ldots, u_w]$

- $[h, T]$ computes the coefficient of multilinear monomial T in $h \in K[z_1, \ldots, z_w]$
- $[g, S]$ computes the coefficient of multilinear monomial S in $h \in K[u_1, \ldots, u_w]$

Meena Mahajan. *joint work with* Raghavendra Rao B.V

Small Width Arithmetic Circuits
Proof sketch cont’d…

A mind block

Meena Mahajan. joint work with Raghavendra Rao B.V
Small Width Arithmetic Circuits
Proof sketch cont’d…

- Introduce new variables for each of the wires carrying only constants.
Proof sketch cont’d…

Meena Mahajan. \textit{joint work with} Raghavendra Rao B.V
Small Width Arithmetic Circuits
Proof sketch cont’d...

- Introduce new variables for each of the wires carrying only constants.
- The resulting circuit is *syntactic multilinear* in $X \cup Y$
Proof sketch cont’d…

Steps:

- Break the circuit at depth $l/2$ into sub-circuits A, B
Proof sketch cont’d …

\[p_h = x_1x_2x_3y_2 + x_1y_2y_4 + y_1y_2y_4 + x_2x_3y_3 + y_3y_4 \]

\[p_f(z_1, z_2) = y_3y_4 + z_1y_4 + z_2y_3 + z_1z_2 \]

\[p_{g_1} = x_1y_2 + y_1y_2 \]

\[p_{g_2} = x_2x_3 \]
Proof sketch cont’d…

Steps:

- Break the circuit at depth \(l/2 \) into sub-circuits \(A, B \)
- Inductively build circuits which compute the coefficients of polynomials computed by \(A \) and \(B \)
Boolean Circuit Classes Arithmetizing Circuit Classes Syntactic Multilinearity
Depth-Reduction for sma-sSC

Proof sketch cont’d ...

\[pf(z_1, z_2) = y_3y_4 + z_1y_4 + z_2y_3 + z_1z_2 \]

\[pg_1 = x_1y_2 + y_1y_2 \]
\[pg_2 = x_2x_3 \]

\[h(z_1 = g_1, z_2 = g_2) \]

Values of \(Y \) are hardwired

Meena Mahajan. \textit{joint work with} Raghavendra Rao B.V
Small Width Arithmetic Circuits
Main theorem

Hence we have,

Theorem

For any syntactic multilinear arithmetic circuit of width w, depth l and degree d, there is an equivalent bounded fan-in arithmetic circuit of depth $O(w(\log l + \log d))$ and size $O((ld)^w)$.

Corollary: $\text{sma-sSC}^0 \subseteq \text{a-NC}^1$.

poly-size constant width \longrightarrow poly-size log depth
A recent modification by Jansen makes the depth-reduced circuit also syntactic multilinear; i.e. \(\text{sma-sSC}^0 \subseteq \text{sma-NC}^1 \).

This is unexpected, because without the sma- restriction, not only is such a containment open, but in fact exactly the converse containment is known to hold; \(\text{a-NC}^1 \subseteq \text{a-sSC}^0 \).
Open Questions

- Depth reduction for general constant width arithmetic circuits?
- Can the constructions be made uniform?
- Can we separate sma-BWBP from sma-BP?
Thank You